Inequalities and limits of weighted spectral geometric mean
نویسندگان
چکیده
We establish some new properties of spectral geometric mean. In particular, we prove a log majorization relation between (Bts/2A(1−t)sBts/2)1/s and the t-spectral mean A♮tB:=(A−1♯B)tA(A−1♯B)t two positive semidefinite matrices A B, where A♯B is mean, dominant one. The limit involving also studied. then extend all results in context symmetric spaces negative curvature.
منابع مشابه
Some weighted operator geometric mean inequalities
In this paper, using the extended Holder- -McCarthy inequality, several inequalities involving the α-weighted geometric mean (0<α<1) of two positive operators are established. In particular, it is proved that if A,B,X,Y∈B(H) such that A and B are two positive invertible operators, then for all r ≥1, ‖X^* (A⋕_α B)Y‖^r≤‖〖(X〗^* AX)^r ‖^((1-α)/2) ‖〖(Y〗^* AY)^r ‖^((1-α)/2) ‖〖(X〗^* BX)^r ‖^(α/2) ‖〖(Y...
متن کاملWeighted Inequalities for the Sawyer Two-dimensional Hardy Operator and Its Limiting Geometric Mean Operator
We consider T f = ∫ x1 0 ∫ x2 0 f (t1, t2)dt1dt2 and a corresponding geometric mean operator G f = exp(1/x1x2) ∫ x1 0 ∫ x2 0 log f (t1, t2)dt1dt2. E. T. Sawyer showed that the Hardy-type inequality ‖T f ‖Lq u ≤ C‖ f ‖Lp v could be characterized by three independent conditions on the weights. We give a simple proof of the fact that if the weight v is of product type, then in fact only one condit...
متن کاملSpectral triples of weighted groups
We study spectral triples on (weighted) groups and consider functors between the categories of weighted groups and spectral triples. We study the properties of weights and the corresponding functor for spectral triples coming from discrete weighted groups.
متن کاملSingular Value and Arithmetic-geometric Mean Inequalities for Operators
A singular value inequality for sums and products of Hilbert space operators is given. This inequality generalizes several recent singular value inequalities, and includes that if A, B, and X are positive operators on a complex Hilbert space H, then sj ( A 1/2 XB 1/2 ) ≤ 1 2 ‖X‖ sj (A+B) , j = 1, 2, · · · , which is equivalent to sj ( A 1/2 XA 1/2 −B 1/2 XB 1/2 ) ≤ ‖X‖ sj (A⊕B) , j = 1, 2, · · ...
متن کاملOn Inequalities for Hypergeometric Analogues of the Arithmetic-geometric Mean
In this note, we present sharp inequalities relating hypergeometric analogues of the arithmetic-geometric mean discussed in [5] and the power mean. The main result generalizes the corresponding sharp inequality for the arithmetic-geometric mean established in [10].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear & Multilinear Algebra
سال: 2022
ISSN: ['0308-1087', '1026-7573', '1563-5139']
DOI: https://doi.org/10.1080/03081087.2022.2158294